
Applications Note: Automated Two-Train Operation Using Passing Sidings

Overview:

This Applications Note describes the automated operation of two trains running on a single shared

mainline using a passing siding.

The first train departs from the station, makes one complete circuit around the mainline, returns to

the station, and stops. The second train then departs in the opposite direction, makes one complete

circuit around the mainline, returns to the station, and stops. The action then repeats.

Track Layout:

The track layout for this example is shown in Figure 1. Common ground wiring is employed.

Three insulated track blocks, here labeled A, B, and C are used.

Figure 1. Track Layout and Sensor Positioning

CTI Hardware:

The automated operation of the two trains requires one Train Brain and one Smart Cab module.

Three of the Train Brain’s four controllers and two of its four sensor ports are utilized. The two

modules are wired as shown in Figure 2.

In this example, we assume the use of magnetic sensors, however, the example can be easily

adapted to work with all sensor types. The sensors are situated as shown in the track diagram of

Figure 1.

Figure 2. CTI Module Wiring Diagram

TCL Programming:

As always, it’s best to begin with an “English language” description of what we want our TCL

program to accomplish. Then, we’ll translate that description into the more formal TCL language

syntax that the TBrain program understands. With that in mind, here’s a description of what we

want our TCL program to do:

Our TCL program should monitor each of our two sensors to detect the arrival of a train

at the station. Each time a train arrives, we want to bring it to a smooth stop by applying

the brake on our throttle. We then want to remove power from the siding on which the

train arrived, and route it instead to the siding occupied by the other train. We’ll then

throw the switches to route the newly selected siding to the mainline. Finally, we’ll release

the brake on our throttle, allowing the newly selected train to depart.

To assist us in writing our TCL program, it’s often helpful to first reorganize our written

description into a more structured list form, as follows:

 When a train is detected arriving at the station, do the following: (a)

1) Apply the brake to bring that train to a smooth stop (b)

2) Route power to the opposite passing siding (c)

3) Throw the switches to route the newly selected siding to the mainline (d)

4) Release the brake to allow the train on the newly selected siding to depart (e)

With our thoughts organized in list form, it’s a rather straightforward task to write our TCL

program. In fact, the entire automated operation of the two trains requires only a single TCL

language When-Do statement.

The resulting TCL program is shown below. As you can see, the TCL code looks very much like

our English language list. [To illustrate that point, we’ve given each line in the list above an index,

(a) through (e). Then, we’ve shown that index next to the statement(s) in our TCL program

corresponding to that item. These indices are not part of the actual TCL program.]

Controls: SidingSelect, SwitchDirection, SwitchPower, spare

Sensors: SensorA, SensorB, spare, spare

SmartCabs: Cab1

Actions:

When SensorA = True Or SensorB = True Do (a)

 Cab1.Brake = On, (b)

 Wait 10, (b)

 SidingSelect = SidingSelect~ (c)

 SwitchDirection = SwitchDirection~ (c)

 SwitchPower = Pulse 0.25 (d)

 Cab1.Direction = Cab1.Direction~ (e)

 Cab1.Brake = Off (e)

That’s all it takes to automate the operation of our trains. Here’s how it works:

Our TCL program’s single When-Do statement is activated whenever either of our sensors is

triggered, using the When clause:

When SensorA = True Or SensorB = True Do

Based on the positions of our sensors, this condition occurs any time a train arrives at the station.

(The locations of the two magnetic sensors may need to be adjusted based on the length of the train

and siding to allow enough room for the train to fully stop within the siding for the chosen

momentum setting.)

In response, we immediately carry out our When-Do statement’s first action, stopping the arriving

train by applying the brake on our Smart Cab, using the statement:

Cab1.Brake = On

We then wait 10 seconds to allow the Smart Cab’s simulated momentum feature to bring the train

to a smooth, prototypical stop.

Once the train has come to a complete stop, we route power away from its siding and onto the

siding occupied by the other train. We accomplish that task using the statement:

SidingSelect = SidingSelect~

Recall from our wiring diagram that the Train-Brain routes power to either siding A or siding B,

depending on the state of its “SidingSelect” control relay. When SidingSelect is “Off” (i.e. when

its relay is in the NC position) the Smart Cab’s output is routed to block A. When SidingSelect is

“On” (i.e. when its relay is in the NO position), the Smart Cab’s output is routed to block B.

Thus, each time a train arrives, we want to change the state of SidingSelect to be the opposite of

its current state. When it’s On, we want to turn it Off. When it’s Off, we want to turn it On.

We can accomplish that very easily, using TCL’s logical “not” operator ‘~’, which produces the

opposite logical state of its operand. Thus, the above action statement sets SidingSelect equal to

the opposite of its current logical state, as desired.

Now it’s time to throw our turnouts to route the newly selected siding to the mainline. For dual-

coil solenoid driven switch machines, that’s a two-step process. (See Section 5 of the CTI User’s

Guide for a full discussion of switch control if you want to try this example using other types of

switch machines.)

First, we configure the controller governing switch direction. As before, TCL’s ‘~’ operator is

used to set SwitchDirection to the opposite of its current logical state. Then we apply a 0.25 second

power pulse via the SwitchPower controller to throw the turnouts. (Note that since we always

want our two switches to be thrown in tandem, they’re both controlled using the same Train-Brain

controllers.)

SwitchDirection = SwitchDirection~

SwitchPower = Pulse 0.25

Finally, we’re now ready to send our second train on its way. Since it will be traveling in the

opposite direction of our first train, we’ll first need to change the direction on our Smart Cab. (You

guessed it, we’ll just use TCL’s “~” operator to accomplish that, too.) Then we simply release the

brake, and off she goes. Here’s the TCL code to do it:

Cab1.Direction = Cab1.Direction~

Cab1.Brake = Off

As our second train begins its journey, the operation of our When-Do statement is complete.

Once the second train finishes its circuit around the mainline, it will re-enter its passing siding at

the station. And when it does, our When-Do statement will detect its arrival, and the entire process

will begin again.

Enhancements:

The above TCL program works great, but one obvious drawback is that both trains run at the same

throttle setting. Unless our two trains happen to be closely matched in weight and engine

performance, we’d really prefer to be able to control the speed of each train independently from

the other.

That’s an easy enhancement to add to our program. All we’ll need is a variable to remember the

speed of the idled train. When a train pulls into the station, we’ll save its speed setting away into

this variable. Then the next time that train is ready for departure, we’ll restore its speed setting to

the value we previously stored away.

In this way, we can use the on-screen throttle to set the speed of each train the first time it departs

(or to adjust the train’s speed anytime thereafter). From then on, our automated “cruise-control”

will take effect to bring each train back up to that speed again each time it leaves the station.

Here’s our revised TCL program:

Controls: SidingSelect, SwitchDirection, SwitchPower, spare

Sensors: SensorA, SensorB, spare, spare

SmartCabs: Cab1

Variables: RememberedSpeed, Temp

Actions:

When SensorA = True Or SensorB = True Do

 Cab1.Brake = On,

 Wait 10,

 SidingSelect = SidingSelect~

 SwitchDirection = SwitchDirection~

 SwitchPower = Pulse 0.25

 Temp = Cab1.Speed

 Cab1.Speed = RememberedSpeed

 RememberedSpeed = Temp

 Cab1.Direction = Cab1.Direction~

 Cab1.Brake = Off

Modifications:

This example can be used “as is”, or may be easily adapted to support 3 (or more) passing sidings,

interactive point-and-click siding selection/train activation from an on-screen CTC panel, etc. Just

use the code provided here as a starting point, and let your imagination take over from there.

