
Applications Note: Automated Four-Train Operations Using Cab Control

This Applications Note describes the automated operation of four trains running on a single shared

mainline using computer-automated “cab control”.

Note: The following discussion builds upon topics introduced in our two-train cab control

applications note. We recommend the reader first read and understand that example before

proceeding on to the four-train case.

Operation:

Up to four trains run simultaneously along a shared mainline loop, which is divided into a number

of electrically isolated track blocks. A separate, dedicated throttle is assigned to each train

traveling on the mainline. Each throttle is automatically routed to follow its train as it moves from

block to block, providing seamless, independent speed control of each engine.

The traffic conditions ahead of each train are continually monitored. A train is automatically

brought to a smooth stop whenever it approaches too close to a train ahead, and automatically

returns smoothly to its previous running speed once the track ahead has cleared.

Track Layout:

The track layout for this example is shown in Figure 1. Common ground wiring is employed.

Eight insulated track blocks, here labeled A through H are used.

Figure 1. Track Layout

CTI Hardware:

The automated operation of the four trains requires three Dash-8’s, one Watchman, and four Smart

Cab modules (conventional manual throttles may also be used in lieu of the Smart Cabs).

The Dash-8 controllers are used to select the output of one of our four throttles to be routed to each

track block. The Watchman’s sensor ports are used to detect the presence of a train in each track

block.

In this example, we assume the use of current detection sensors, however, the example may be

easily adapted to work with all sensor types.

The modules are wired as shown in Figure 2.

Figure 2. CTI Module Wiring Diagram

In the App Note describing a cab control scheme for operating two trains on a four block mainline,

we fully described the algorithm for performing cab routing and collision avoidance, and its

realization via the TCL language.

It is best to first read and fully understand the workings of that simpler case. After doing so, in

this App Note, we can then concentrate our efforts on introducing the minor differences needed to

extend that basic approach to a more generalized solution for operating any number of trains using

cab control. In the discussion below, it is assumed that the reader has read, and understands, the

earlier App Note.

As before, we will focus our discussion on a single representative track block, again block B. The

behavior of all remaining track blocks will be identical, only the entity names will change.

To review, here is the English language description of our cab control “algorithm” to be performed

in each track block:

 1) When a train enters this block …

 2) If there is traffic in the block ahead, then …

 a) Apply the brake on the cab assigned to this block.

 b) Wait until any traffic in the block ahead clears, then …

 c) Release the brake on the cab assigned to this block.

 3) Assign this block’s cab to the block ahead.

And, here, for reference, is the TCL code for our earlier two-train, four-block solution (see the

discussion in the earlier App Note to fully understand this TCL code):

1) When SensorB = True Do

2) If CabB = CabA Then Wait Until SensorA = False Then EndIf

3) If SensorC = True Then

4) Cab[CabB].Brake = On

5) Wait Until SensorC = False Then

6) Cab[CabB].Brake = Off

7) EndIf

8) CabC = CabB

TCL Programming Changes:

Recall that in our two-train cab control example we examined the state of our cab assignment relay

controller to determine which of our two cabs was currently routed to this block (see lines 4 and 6

above). Now, however, things aren’t quite that simple, since it takes three controllers to select one

of our four cabs (see the wiring diagram in Figure 2).

To make the job easier, we’ll create a “cab assignment” variable, for each track block, and use it

to indicate which cab is currently assigned to that block. A value of zero in a block’s cab

assignment variable will indicate that Cab[0] is currently assigned to that block, a value of 1 will

indicate that Cab[1] is currently assigned to that block, etc. That way, the cab assignment variable

can be used as an index into our array of four Smart Cabs, just as we did using the discrete cab

control relay in our earlier example.

The four-train cab control When-Do will therefore look exactly the same! Only now, anytime we

make a change to our cab assignment variables (such as in line 8 above), we’ll also need to use the

value of that variable to set the cab control relays to pick which of our four cabs to physically route

into each track block. (Since we’ll need to do that for all eight track blocks, it’s the perfect

opportunity to use a subroutine so we only need to do the work once.) Here’s our revised cab

control When-Do. The only change is highlighted in green, namely the call to our new subroutine.

1) When SensorB = True Do

2) If CabB = CabA Then Wait Until SensorA = False Then EndIf

3) If SensorC = True Then

4) Cab[CabB].Brake = On

5) Wait Until SensorC = False Then

6) Cab[CabB].Brake = Off

7) EndIf

8) CabC = CabB, SetRelays(CabC, &CabC1, &CabC2, &CabC3)

Now, here’s our new “SetRelays” subroutine. Its purpose is to convert the cab assignment

variable’s value to the appropriate settings of the corresponding three cab select controllers. A

simple If-Then-Else statement makes the appropriate relay settings for each of the four possible

values of our CabSelect variable. Then, in our main program we simply pass the value of the

CabSelect variable, and pointers to the relay controllers (using TCL’s ‘&’ operator) for the current

track block. Remember that we need to pass pointers to allow the subroutine to change the state

of the relays (using TCL’s ‘*’ operator) passed to it “by reference”. See the discussion on passing

by value vs. by reference in the CTI User’s Guide for more details.

Sub SetRelays (CabSelect, Relay1, Relay2, Relay3)

 If CabSelect=0 Then *Relay1=Off, *Relay2=Off, *Relay3=Off

 ElseIf CabSelect=1 Then *Relay1=On, *Relay2=Off, *Relay3=Off

 ElseIf CabSelect=2 Then *Relay1=Off, *Relay2=Off, *Relay3=On

 ElseIf CabSelect=3 Then *Relay1=Off, *Relay2=On, *Relay3=On

 EndIf

EndSub

Initialization:

As in the two-train case, at startup, we can let our TCL code go out and find the starting locations

of each of our trains and set the initial cab assignments.

This is a bit fancier than in the two-train case, but not by much:

 When $Reset = True Do

 'Initialize cab assignments: engine in highest lettered track block gets Cab[0]

 TrainCount = 0,

 CabH = TrainCount, CabH = SensorH*, TrainCount = SensorH+,

 CabG = TrainCount, CabG = SensorG*, TrainCount = SensorG+,

 CabF = TrainCount, CabF = SensorF*, TrainCount = SensorF+,

 CabE = TrainCount, CabE = SensorE*, TrainCount = SensorE+,

 CabD = TrainCount, CabD = SensorD*, TrainCount = SensorD+,

 CabC = TrainCount, CabC = SensorC*, TrainCount = SensorC+,

 CabB = TrainCount, CabB = SensorB*, TrainCount = SensorB+,

 CabA = TrainCount, CabA = SensorA*, TrainCount = SensorA+,

This When-Do assigns each train a cab. The lead train (the train in the “highest” lettered track

block) is assigned to Cab[0], the next train to Cab[1], etc.

With that initialization complete, our cab control system is ready to roll. We can simply throttle

up our trains using their on-screen pop-up throttles. From then on, each throttle will automatically

follow its train around the layout and our built-in collision avoidance system will automatically

keep our four trains safely separated.

Using Cab Control with Conventional Throttles:

In this example, we’ve used the features of CTI’s computer-controlled Smart Cab throttle to

smoothly start and stop our trains based on traffic conditions ahead. But this same cab control

technique can be used with conventional manual throttles as well.

In that case, a simple Train Brain controller can be substituted for each Smart Cab to provide the

automated braking function. We simply modify our TCL code to activate the controller (instead

of the Smart Cab’s brake) to apply the brake and deactivate the controller to release it. Using this

technique, we sacrifice the smooth starts and stops provided by the Smart Cab’s simulated inertia

feature, but functionally things work just the same.

Figure 3. Controller-based brake function

Alternatively, some users may prefer to leave the control of the train completely in the hands of

the operator. The computer can be used to handle the automated routing of cabs to follow trains

as they move about the layout, leaving the operator free to run his train without worrying about

the need to manually route cabs to track blocks. In this case, the operator is fully responsible for

obeying trackside signals to avoid collision. He’ll receive no help from the PC. For that, only

Steps #1, 2b and #3 of the algorithm are required, and the TCL code for our representative block

B, is reduced to:

 When SensorB = True Do

 Wait Until SensorC = False Then

 CabC = CabB, SetRelays(CabC, &CabC1, &CabC2, &CabC3)

 EndIf

TCL Program Listing:

The complete TCL program for our fully automated four-train operation is shown below. You can

simply cut-and-paste it into Tbrain’s TCL editor window to give it a try.

This is by no means the only way to solve the cab control problem. Many other implementations

are possible. We suggest you use this example as a starting point, and then let your imagination

take over. Try adding code for operation in the reverse direction, add code to handle a passing

siding, etc. And most of all, have fun.

To
Cab Select relays NC

NO

From
Manual Throttle

Controls: CabA1, CabA2, CabB1, CabB2, CabC1, CabC2, CabD1, CabD2,

 CabE1, CabE2, CabF1, CabF2, CabG1, CabG2, CabH1, CabH2,

 CabA3, CabB3, CabC3, CabD3, CabE3, CabF3, CabG3, CabH3

Sensors: SensorA#, SensorB#, SensorC#, SensorD#,

 SensorE#, SensorF#, SensorG#, SensorH#

SmartCabs: Cab[4]

Variables: CabA, CabB, CabC, CabD, CabE, CabF, CabG, CabH, TrainCount

Actions:

Sub SetRelays (CabSelect, Relay1, Relay2, Relay3)

 If CabSelect=0 Then *Relay1=Off, *Relay2=Off, *Relay3=Off

 ElseIf CabSelect=1 Then *Relay1=On, *Relay2=Off, *Relay3=Off

 ElseIf CabSelect=2 Then *Relay1=Off, *Relay2=Off, *Relay3=On

 ElseIf CabSelect=3 Then *Relay1=Off, *Relay2=On, *Relay3=On

 EndIf

EndSub

 When $Reset = True Do
 'Initialize cab assignments: engine in highest lettered track block gets Cab[0]

 TrainCount = 0,

 CabH = TrainCount, CabH = SensorH*, TrainCount = SensorH+

 CabG = TrainCount, CabG = SensorG*, TrainCount = SensorG+

 CabF = TrainCount, CabF = SensorF*, TrainCount = SensorF+

 CabE = TrainCount, CabE = SensorE*, TrainCount = SensorE+

 CabD = TrainCount, CabD = SensorD*, TrainCount = SensorD+

 CabC = TrainCount, CabC = SensorC*, TrainCount = SensorC+

 CabB = TrainCount, CabB = SensorB*, TrainCount = SensorB+

 CabA = TrainCount, CabA = SensorA*, TrainCount = SensorA+

 ‘Configure cab control relays

 SetRelays(CabA, &CabA1, &CabA2, &CabA3)

 SetRelays(CabB, &CabB1, &CabB2, &CabB3)

 SetRelays(CabC, &CabC1, &CabC2, &CabC3)

 SetRelays(CabD, &CabD1, &CabD2, &CabD3)

 SetRelays(CabE, &CabE1, &CabE2, &CabE3)

 SetRelays(CabF, &CabF1, &CabF2, &CabF3)

 SetRelays(CabG, &CabG1, &CabG2, &CabG3)

 SetRelays(CabH, &CabH1, &CabH2, &CabH3)

 When SensorA = True Do

 If CabA = CabH Then Wait Until SensorH = False Then EndIf

 If SensorB = True Then

 Cab[CabA].Brake = On

 Wait Until SensorB = False Then

 Cab[CabA].Brake = Off

 EndIf

 CabB = CabA, SetRelays(CabB, &CabB1, &CabB2, &CabB3)

 When SensorB = True Do

 If CabB = CabA Then Wait Until SensorA = False Then EndIf

 If SensorC = True Then

 Cab[CabB].Brake = On

 Wait Until SensorC = False Then

 Cab[CabB].Brake = Off

 EndIf

 CabC = CabB, SetRelays(CabC, &CabC1, &CabC2, &CabC3)

 When SensorC = True Do

 If CabC = CabB Then Wait Until SensorB = False Then EndIf

 If SensorD = True Then

 Cab[CabC].Brake = On

 Wait Until SensorD = False Then

 Cab[CabC].Brake = Off

 EndIf

 CabD = CabC, SetRelays(CabD, &CabD1, &CabD2, &CabD3)

 When SensorD = True Do

 If CabD = CabC Then Wait Until SensorC = False Then EndIf

 If SensorE = True Then

 Cab[CabD].Brake = On

 Wait Until SensorE = False Then

 Cab[CabD].Brake = Off

 EndIf

 CabE = CabD, SetRelays(CabE, &CabE1, &CabE2, &CabE3)

 When SensorE = True Do

 If CabE = CabD Then Wait Until SensorD = False Then EndIf

 If SensorF = True Then

 Cab[CabE].Brake = On

 Wait Until SensorF = False Then

 Cab[CabE].Brake = Off

 EndIf

 CabF = CabE, SetRelays(CabF, &CabF1, &CabF2, &CabF3)

 When SensorF = True Do

 If CabF = CabE Then Wait Until SensorE = False Then EndIf

 If SensorG = True Then

 Cab[CabF].Brake = On

 Wait Until SensorG = False Then

 Cab[CabF].Brake = Off

 EndIf

 CabG = CabF, SetRelays(CabG, &CabG1, &CabG2, &CabG3)

 When SensorG = True Do

 If CabG = CabF Then Wait Until SensorF = False Then EndIf

 If SensorH = True Then

 Cab[CabG].Brake = On

 Wait Until SensorH = False Then

 Cab[CabG].Brake = Off

 EndIf

 CabH = CabG, SetRelays(CabH, &CabH1, &CabH2, &CabH3)

 When SensorH = True Do

 If CabH = CabG Then Wait Until SensorG = False Then EndIf

 If SensorA = True Then

 Cab[CabH].Brake = On

 Wait Until SensorA = False Then

 Cab[CabH].Brake = Off

 EndIf

 CabA = CabH, SetRelays(CabA, &CabA1, &CabA2, &CabA3)

